Skip to the end of the images gallery Navigation umschalten
Skip to the beginning of the images gallery Navigation umschalten

Neues verkehrswissenschaftliches Journal NVJ - Ausgabe 35
3D-Printed Scale Model for Detection of Railway Wheel Flats using Augmented Vibration Data from Axle Box
ePDF
34,2 MB
DRM: kein Kopierschutz
ISBN-13: 9783769395334
Verlag: BoD - Books on Demand
Erscheinungsdatum: 27.02.2025
Sprache: Englisch
erhältlich als:
19,99 €
inkl. MwSt.
sofort verfügbar als Download
Du schreibst?
Erfüll dir deinen Traum, schreibe deine Geschichte und mach mit BoD ein Buch daraus!
Mehr InfosAs data-driven methods for defect detection become more prevalent in the railway industry, the demand for high-quality data continues to grow. However, field experiments are often time-consuming and constrained by practical limitations. This study introduces a methodology that uses Fused Deposition Modeling (FDM) 3D printing to develop a scale model for simulating wheel flat-induced vibrations, combined with a Long Short-Term Memory (LSTM)-based generative model to produce synthetic vibration data. This approach improves data quality by enhancing quantity, variety, and velocity, while increasing data volume and reducing the need for extensive experimental testing. The LSTM-based model generates realistic synthetic data, minimizing reliance on labor-intensive field experiments and offering a broader spectrum of defect scenarios. By accelerating the data generation process, this method provides an effective alternative in a laboratory setting and contributes to foundational research aimed at improving defect detection and maintenance processes in the railway industry.
Eigene Bewertung schreiben
Es sind momentan noch keine Pressestimmen vorhanden.