Multiplizitäten von Quantengruppen

Multiplizitäten von Quantengruppen

Gert Burkhart

Natur- & Humanwissenschaften

Paperback

96 Seiten

ISBN-13: 9783838601465

Verlag: Diplom.de

Erscheinungsdatum: 09.07.1997

Sprache: Deutsch

Bewertung::
0%
38,00 €

inkl. MwSt. / portofrei

sofort verfügbar

Du schreibst?

Erfüll dir deinen Traum, schreibe deine Geschichte und mach mit BoD ein Buch daraus!

Mehr Infos
Inhaltsangabe:Einleitung: 
Quantengruppen als quantisierte Universelle Einhüllende von Lie-Algebren sind Gegenstand der vorliegenden Arbeit. Sie bietet eine Einführung in die Thematik, setzt lediglich Grundkenntnisse der Darstellungstheorie Halbeinfacher Lie-Algebren voraus, wie sie etwa bei Humpfreys, Jacobsen, Serre oder Bourbaki vermittelt werden, und ordnet die Darstellungstheorie der Quantengruppen in die Physik konformer Feldtheorien ein. 
Ansatzpunkt für weitere Forschung könnte die Untersuchung der durch Wahl des Quantisierungsparameters verursachten Reduzibilität von Gewichtsräumen sein. 
Gang der Untersuchung: 
Die vorliegende Arbeit stellt zunächst in Kurzform (Kapitel 1) einige wesentliche Begriffe, Definitionen und Sätze zur Darstellungstheorie der Halbeinfachen Lie-Algebren vor. Einige besonders einfache (Gewichtsdiagramm zum Höchstgewicht I = 4 I1 + I2) oder den Physikern wohlbekannte Darstellungen (Isospinoktett, Quarktripletts) werden exemplarisch betrachtet und grafisch gezeigt. Hierzu werden Multiplizitäten nach Freudenthals , Formel und dem Satz von Kostant und Dimensionen der Gewichtsräume nach Weyl berechnet. 
Ausgehend hiervon werden kurz die wesentlichen Operationen auf und Eigenschaften von Hopf-Algebren aufgeführt. Über die Definition der Quasitriangularität bei Hopf-Algebren und den Zusammenhang zur Yang-Baxter-Gleichung erhält man die Verbindung zu Quantengruppen als speziellen Hopf-Algebren. Die Hopf-Algebra-Eigenschaft der Quantengruppen wird durch Verifikation der Hopf-Algebra-Rechenregeln für Quantengruppen gezeigt. 
Die Darstellungstheorie Halbeinfacher Lie-Algebren wird auf Quantengruppen übertragen. Es wird gezeigt, dass bei nicht verschwindender Quantendimension der Gewichtsräume, berechnet nach der quantifizierten Weyl-Formel, die Darstellungstheorie derjenigen der Halbeinfachen Lie-Algebren entspricht. Für den Quantifizierungsparameter q = l sind beider (Lie-Algebra und entsprechende Quanten-Gruppe) Dimensionen sogar identisch. 
Interessant sind im weiteren die Fälle, in denen die Quanten-Dimension verschwindet. Es wird, ausgehend von den Überlegungen Dobrevs, untersucht, in welchen dieser Fällen die Multiplizitäten der Quantengruppendarstellungen von denen der entsprechenden Lie-Algebren abweichen. Inwieweit dies für Elementarteilchen-Multipletts (Ununterscheidbarkeit mehrerer Elementarteilchen bei hohen Energien) Bedeutung haben könnte, muss offen bleiben. 
In den konformen Feldtheorien sind die […]
Gert Burkhart

Gert Burkhart

Es sind momentan noch keine Pressestimmen vorhanden.

Eigene Bewertung schreiben
Bitte melden Sie sich hier an, um eine Rezension abzugeben.

3D-Ansicht des Produktes (beispielhaft auf Grundlage des Einbandes, Verhältnisse und Details variieren)

Paperback
PaperbackPaperback Glue Binding